Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant Signal Behav ; 19(1): 2336724, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38600704

RESUMO

Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.


Assuntos
Fumaça , Solanum tuberosum , Animais , Solanum tuberosum/metabolismo , Biocombustíveis , Fotossíntese , Metilação
2.
Pharmaceutics ; 15(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631337

RESUMO

Ginseng is a traditional medicine with health benefits for humans. Protopanaxadiol (PPD) is an important bioactive compound found in ginseng. Transgenic rice containing PPD has been generated previously. In the present study, extracts of this transgenic rice were evaluated to assess their antiadipogenic and anti-inflammatory activities. During adipogenesis, cells were treated with transgenic rice seed extracts. The results revealed that the concentrations of the rice seed extracts tested in this study did not affect cell viability at 3 days post-treatment. However, the rice seed extracts significantly reduced the accumulation of lipids in cells and suppressed the activation of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), which in turn inhibited the expression of adipogenesis-related mRNAs, such as adiponectin, PPARγ, C/EBPα, sterol regulatory element-binding protein 1, glucose transport member 4, and fatty acid synthase. In adipocytes, the extracts significantly reduced the mRNA expression of inflammation-related factors following LPS treatment. The activation of NF-κB p65 and ERK 1/2 was inhibited in extract-treated adipocytes. Moreover, treatment with extract #8 markedly reduced the cell population of the G2/M phase. Collectively, these results indicate that transgenic rice containing PPD may act as an obesity-reducing and/or -preventing agent.

3.
PLoS One ; 18(1): e0281102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706132

RESUMO

Cellulose and chitin are the most abundant naturally occurring biopolymers synthesized in plants and animals and are used for synthesis of different organic compounds and acids in the industry. Therefore, cellulases and chitinases are important for their multiple uses in industry and biotechnology. Moreover, chitinases have a role in the biological control of phytopathogens. A bacterial strain Bacillus subtilis TD11 was previously isolated and characterized as a putative biocontrol agent owing to its significant antifungal potential. In this study, cellulase and chitinase produced by the strain B. subtilis TD11 were purified and characterized. The activity of the cellulases and chitinases were optimized at different pH (2 to 10) and temperatures (20 to 90°C). The substrate specificity of cellulases was evaluated using different substances including carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and crystalline substrates. The cellulase produced by B. subtilis TD11 had a molecular mass of 45 kDa while that of chitinase was 55 kDa. The optimal activities of the enzymes were found at neutral pH (6.0 to 7.0). The optimum temperature for the purified cellulases was in the range of 50 to 70°C while, purified chitinases were optimally active at 50°C. The highest substrate specificity of the purified cellulase was found for CMC (100%) followed by HEC (>50% activity) while no hydrolysis was observed against the crystalline substrates. Moreover, it was observed that the purified chitinase was inhibitory against the fungi containing chitin in their hyphal walls i.e., Rhizoctonia, Colletotrichum, Aspergillus and Fusarium having a dose-effect relationship.


Assuntos
Celulase , Celulases , Quitinases , Animais , Bacillus subtilis , Antifúngicos/química , Quitinases/farmacologia , Quitinases/química , Celulose , Quitina
4.
Life (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431021

RESUMO

(1) Background: Osteoporosis is a disease in which bones are weakened and fractured easily because of various factors. It is mainly observed in elderly and postmenopausal women, and it continues to carry high economic costs in aging societies. Normal bone maintains a healthy state through a balanced process of osteoclast suppression and osteoblast activation; (2) Methods: In this study, osteoclast inhibition was induced by inhibiting osteoclast differentiation using ginseng protopanaxadiol-enriched rice (PPD-rice) seed extract. To analyze the effect of PPD-rice extract on the inhibition of osteoclast differentiation, bone marrow macrophages extracted from mice were treated with PPD-rice and Dongjin seed (non-transformed rice) extracts and analyzed for the inhibition of osteoclast differentiation; (3) Results: The results illustrated that PPD-rice extract reduced the transcription and translation of NFATc1, a modulator of osteoclast formation, decreased the mRNA expression of various osteoclast differentiation marker genes, and reduced osteoclast activity. Moreover, the bone resorptive activity of osteoclasts was diminished by PPD-rice extract on Osteo Assay plates; (4) Conclusions: Based on these results, PPD-rice extract is a useful candidate therapeutic agent for suppressing osteoclasts, an important component of osteoporosis, and it could be used as an ingredient in health supplements.

5.
Toxics ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36287898

RESUMO

Nanoparticle (NP) application is most effective in decreasing metalloid toxicity. The current study aimed to evaluate the effect of Bacillus subtiles synthesized iron oxide nanoparticles (Fe3O4 NPs) against arsenic (As) stress on rice (Oryza sativa L.) seedlings. Different concentrations of As (5, 10 and 15 ppm) and Bacillus subtilis synthesized Fe3O4 NPs solution (5, 10 and 15 ppm) alone and in combination were applied to rice seedlings. The results showed that As at 15 ppm significantly decreased the growth of rice, which was increased by the low level of As. Results indicated that B. subtilis synthesized Fe3O4 NP-treated plants showed maximum chlorophyll land protein content as compared with arsenic treatment alone. The antioxidant enzymes such as SOD, POD, CAT, MDA and APX and stress modulators (Glycine betain and proline) also showed decreased content in plants as compared with As stress. Subsequently, Bacillus subtilis synthesized Fe3O4 NPs reduced the stress associated parameters due to limited passage of arsenic inside the plant. Furthermore, reduction in H2O2 and MDA content confirmed that the addition of Bacillus subtilis synthesized Fe3O4 NPs under As stress protected rice seedlings against arsenic toxicity, hence enhanced growth was notice and it had beneficial effects on the plant. Results highlighted that Fe3O4 NPs protect rice seedlings against arsenic stress by reducing As accumulation, act as a nano adsorbent and restricting arsenic uptake in rice plants. Hence, our study confirms the significance of Bacillus subtilis synthesized Fe3O4 NPs in alleviating As toxicity in rice plants.

6.
Toxics ; 10(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35736913

RESUMO

Heavy metal (HM) emissions have increased due to the impact of rising urbanization and anthropogenic activity, affecting different parts of the environment. The goal of this study is to investigate the combined effect of ZnO NPs and bacteria treatment on protein and gene expression profiles of rice plants that are grown in HMs-polluted water. Seeds were primed with Bacillus spp. (Bacillus cereus and Lysinibacillus macroides) before being cultured in Hoagland media containing ZnO NPs (5 and 10 mg/L) and HMs-contaminated water from the Hayatabad industrial estate (HIE), Peshawar, Pakistan. The results revealed that the maximum nitrogen and protein content was observed in the root, shoot, and leaf of the plant grown by combining bacteria-ZnO NPs treatment under HMs stress as compared with plant grown without or with individual treatments of ZnO NPs and bacteria. Furthermore, protein expression analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) revealed that plants that were grown in HMs-polluted water were found to be affected in contaminated water, however the combined effect of bacteria-ZnO NPs reported the more dense protein profile as compared with their individual treatments. Subsequently, plants that were grown in HMs-polluted water have the highest expression levels of stress-induced genes such as myeloblastosis (Myb), zinc-finger protein (Zat-12), and ascorbate peroxidase (Apx) while the combined effect revealed minimum expression as compared with individual treatments. It is concluded that the combined effect of ZnO NPs and bacteria lowered the stress-induced gene expression while it increased the nitrogen-protein content and protein expression in plant grown under HMs stress.

7.
Environ Geochem Health ; 44(1): 57-68, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34131852

RESUMO

Present study was carried out to explore heavy metals pollution and potential ecological risk factors associated with agriculture soil irrigated with industrial effluents of Hayatabad industrial estate, Peshawar (HIEP) and Gadoon industrial estate, Sawabi (GIES) of Khyber-Pakhtunkhwa, Pakistan through multivariate geo-statistical tools. Diverse statistical tools like cluster analysis (HC) and principal component analysis (PCA), along with geo-statistical approaches were applied to highlight the geogenic and anthropogenic sources of pollution. The results indicated that concentration of heavy metals in target areas was significantly higher than control. Both soils had significant to moderate enrichment of heavy metals, while Gadoon soil had moderate to considerable ecological risk factor. The geo accumulation indices (Igeo) tendency for heavy metals in both target soil (Gadoon and Hayatabad) were the same. The Pb concentration of both target areas falls in the extremely severely polluted category because of the excessive presence of industries producing lead-containing products. Hence, this study indicated that the majority of toxic heavy metals contributed to soil pollution in the studied areas are coming from industrial and commercial activities.


Assuntos
Metais Pesados , Poluentes do Solo , Agricultura , Monitoramento Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise
8.
GM Crops Food ; 12(1): 449-458, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878358

RESUMO

Resveratrol is synthesized by the catalysis of resveratrol synthases (RS) in a limited number of higher plants. Resveratrol shows potential health-promoting properties, including as an antioxidant and in preventing cardiovascular diseases. Recently, resveratrol-enriched rice has been produced as a novel source of resveratrol. This study aimed to investigate the major agronomic characteristics of resveratrol-enriched rice, Iksan526 (I526) and compared them with those of a nontransgenic and commercial rice variety, Dongjin (DJ). Transgene (RS) integration was confirmed using Southern blot analysis, and homologous recombination was achieved after digestion with the SacI restriction enzyme. The phenotypic traits of I526 grown in Iksan were similar to those grown in Milyang but not similar to those grown in Suwon. In Suwon, I526 had slightly earlier heading dates [i.e., number of days from sowing to heading) and shorter culm lengths. When I526 was treated with 0.4% Basta in the seedling stage, no significant difference was observed among all the agronomic traits compared with nontreated I526; particularly, the culm length, panicle length, number of panicles per hill, 1,000 grain weight of brown rice, and brown rice yield of the Basta-treated rice were similar to those of the nontreated I526, regardless of their cultivation region. The resveratrol content of I526 grown in Suwon and Milyang was increased by 18% and 37%, respectively, than that of I526 grown in the Iksan area. Therefore, DJ and I526 are not significantly different in terms of major agronomic traits depending on variety/year and variety/cultivation region. The results indicated that I526 has the potential to become a commercialized variety in the near future.


Assuntos
Oryza , Grão Comestível , Oryza/genética , Fenótipo , Resveratrol , Plântula
9.
Toxics ; 9(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065355

RESUMO

Heavy metals (HMs) are toxic elements which contaminate the water bodies in developing countries because of their excessive discharge from industrial zones. Rice (Oryza sativa L) crops are submerged for a longer period of time in water, so irrigation with HMs polluted water possesses toxic effects on plant growth. This study was initiated to observe the synergistic effect of bacteria (Bacillus cereus and Lysinibacillus macroides) and zinc oxide nanoparticles (ZnO NPs) (5, 10, 15, 20 and 25 mg/L) on the rice that were grown in HMs contaminated water. Current findings have revealed that bacteria, along with ZnO NPs at lower concentration, showed maximum removal of HMs from polluted water at pH 8 (90 min) as compared with higher concentrations. Seeds primed with bacteria grown in HM polluted water containing ZnO NPs (5 mg/L) showed reduced uptake of HMs in root, shoot and leaf, thus resulting in increased plant growth. Furthermore, their combined effects also reduced the bioaccumulation index and metallothionine (MTs) content and enhanced the tolerance index of plants. This study suggested that synergistic treatment of bacteria with lower concentrations of ZnO NPs helped plants to reduce heavy metal toxicity, especially Pb and Cu, and enhanced plant growth.

10.
Toxics ; 9(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396194

RESUMO

Arsenic (As) contamination has emerged as a serious public health concern worldwide because of its accumulation and mobility through the food chain. Therefore, the current study was planned to check the effect of Bacillus subtilis-synthesized iron oxide nano particles (Fe3O4 NP) on rice (Oryza Sativa L.) growth against arsenic stress (0, 5, 10 and 15 ppm). Iron oxide nanoparticles were extracellular synthesized from Bacillus subtilis with a desired shape and size. The formations of nanoparticles were differentiated through UV-Visible Spectroscopy, FTIR, XRD and SEM. The UV-Visible spectroscopy of Bacillus subtilis-synthesized nanoparticles showed that the iron oxide surface plasmon band occurs at 268 nm. FTIR results revealed that different functional groups (aldehyde, alkene, alcohol and phenol) were present on the surface of nanoparticles. The SEM image showed that particles were spherical in shape with an average size of 67.28 nm. Arsenic toxicity was observed in seed germination and young seedling stage. The arsenic application significantly reduced seed germination (35%), root and shoots length (1.25 and 2.00 cm), shoot/root ratio (0.289), fresh root and shoots weight (0.205 and 0.260 g), dry root and shoots weight (6.55 and 6.75 g), dry matter percentage of shoot (12.67) and root (14.91) as compared to control. Bacillus subtilis-synthesized Fe3O4 NPs treatments (5 ppm) remarkably increased the germination (65%), root and shoot length (2 and 3.45 cm), shoot/root ratio (1.24) fresh root and shoot weight (0.335 and 0.275 mg), dry root and shoot weight (11.75 and 10.6 mg) and dry matter percentage of shoot (10.40) and root (18.37). Results revealed that the application of Fe3O4 NPs alleviated the arsenic stress and enhanced the plant growth. This study suggests that Bacillus subtilus-synthesized iron oxide nanoparticles can be used as nano-adsorbents in reducing arsenic toxicity in rice plants.

11.
Pol J Microbiol ; 68(2): 211-216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250591

RESUMO

Rhizoctonia solani is a soil-borne fungus causing a wide range of plants diseases. Trichoderma gamsii strain T30 has previously been reported as antagonistic against R. solani. Although there are a few studies about the influence of Trichoderma strains on the R. solani density in a pathosystem in the presence of plant hosts, this report for the first time comprehensively describes in situ effects of a T. gamsii strain on the population density of R. solani in the soil microcosmic conditions. The population dynamics of R. solani were followed in the autoclaved and non-autoclaved soils in artificially prepared microcosms up to day 25 after co-inoculation with T. gamsii in the variable ratios (R1/T1; R1/T0.1; R1/T0.01 of R. solani/T. gamsii). The population density of R. solani was evaluated by qPCR. In the autoclaved soil, target DNA copies of R. solani increased in the control samples from 1 × 105 to 6.5 × 106. At R1/T0.01, the number of target DNA copies were not significantly changed until day 11; however, it decreased by around five times at day 25. At R1/T0.1 and R1/T1, the number of DNA copies was reduced to 2.1 × 106 and 7.6 × 105 at day 11, respectively and the reduction was as much as 17 times at day 25. In the non-autoclaved soil, the number of the fungal cells decreased at day 25 whether inoculated or not with Trichoderma indicating a general suppression by the soil microbiome. In brief, T. gamsii significantly inhibited the growth of R. solani in the soil in situ and there was a general suppressive effect of the natural microbiome.Rhizoctonia solani is a soil-borne fungus causing a wide range of plants diseases. Trichoderma gamsii strain T30 has previously been reported as antagonistic against R. solani. Although there are a few studies about the influence of Trichoderma strains on the R. solani density in a pathosystem in the presence of plant hosts, this report for the first time comprehensively describes in situ effects of a T. gamsii strain on the population density of R. solani in the soil microcosmic conditions. The population dynamics of R. solani were followed in the autoclaved and non-autoclaved soils in artificially prepared microcosms up to day 25 after co-inoculation with T. gamsii in the variable ratios (R1/T1; R1/T0.1; R1/T0.01 of R. solani/T. gamsii). The population density of R. solani was evaluated by qPCR. In the autoclaved soil, target DNA copies of R. solani increased in the control samples from 1 × 105 to 6.5 × 106. At R1/T0.01, the number of target DNA copies were not significantly changed until day 11; however, it decreased by around five times at day 25. At R1/T0.1 and R1/T1, the number of DNA copies was reduced to 2.1 × 106 and 7.6 × 105 at day 11, respectively and the reduction was as much as 17 times at day 25. In the non-autoclaved soil, the number of the fungal cells decreased at day 25 whether inoculated or not with Trichoderma indicating a general suppression by the soil microbiome. In brief, T. gamsii significantly inhibited the growth of R. solani in the soil in situ and there was a general suppressive effect of the natural microbiome.


Assuntos
Antibiose , Rhizoctonia/crescimento & desenvolvimento , Microbiologia do Solo , Trichoderma/fisiologia , Contagem de Colônia Microbiana , Densidade Demográfica , Dinâmica Populacional , Reação em Cadeia da Polimerase em Tempo Real
12.
Toxicol Ind Health ; 32(9): 1619-27, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25739395

RESUMO

Heavy metal-resistant bacteria can be efficient bioremediators of metals and may provide an alternative or additional method to conventional methods of metal removal. In this study, 10 bacterial isolates were isolated from soil samples of a sugar industry, located at Peshawar, Pakistan. Morphological, physiological, and biochemical characteristics of these isolates were observed. Sequence analysis (16S ribosomal RNA) revealed that isolated strains were closely related to the species belonging to the genera Pseudomonas, Arthrobacter, Exiguobacterium, Citrobacter, and Enterobacter Bacterial isolates were resistant with a minimum inhibitory concentration (500-900 ppm) to lead ion (Pb(2+)), (500-600 ppm) nickel ion (Ni(2+)), (500-800 ppm) copper ion (Cu(2+)), and (600-800 ppm) chromium ion (Cr(3+)) in solid media. Furthermore, biosorption of metals proved considerable removal of heavy metals by isolated metal-resistant strains. Pseudomonas sp. reduced 37% (Pb(2+)), 32% (Ni(2+)), 29% (Cu(2+)), and 32% (Cr(3+)) and was thus found to be most effective, whereas Enterobacter sp. reduced 19% (Pb(2+)), 7% (Ni(2+)), 14% (Cu(2+)), and 21% (Cr(3+)) and was found to be least effective. While average reduction of Pb(2+), Ni(2+), Cu(2+), and Cr(3+) by Citrobacter sp. was found to be 24%, 18%, 23%, and 27%, respectively, among recognized species. This study revealed that Pseudomonas sp. may provide a new microbial community that can be used for enhanced remediation of contaminated environment.


Assuntos
Absorção Fisiológica , Biodegradação Ambiental , Indústria de Processamento de Alimentos , Resíduos Industriais/prevenção & controle , Metais Pesados/metabolismo , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , Cromo/metabolismo , Cromo/farmacologia , Citrobacter/classificação , Citrobacter/efeitos dos fármacos , Citrobacter/isolamento & purificação , Citrobacter/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Sacarose Alimentar/economia , Sacarose Alimentar/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Enterobacter/classificação , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Enterobacter/metabolismo , Resíduos Industriais/análise , Resíduos Industriais/economia , Chumbo/metabolismo , Chumbo/farmacologia , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Tipagem Molecular , Níquel/metabolismo , Níquel/farmacologia , Paquistão , Filogenia , Pseudomonas/classificação , Pseudomonas/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Microbiologia do Solo , Poluentes do Solo/farmacologia
13.
Int J Phytoremediation ; 16(6): 554-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912242

RESUMO

Heavy metal contamination in soil is an important environmental problem and it has negative effect on agriculture. Bacteria play a major role in phytoremediation of heavy metals contaminated soil. In this study, the effect of Bacillus licheniformis NCCP-59, a halophilic bacterium isolated from salt mines near Karak, Pakistan, were determined on a three week old greenhouse grown seedling and germinating seeds of two rice varieties (Basmati-385 (B-385) and KSK-282) in soil contaminated with different concentrations (0, 100, 250, 500, and 1000 ppm) of Nickel. Nickel significantly reduced the germination rate and germination percentage mainly at 500 and 1000 ppm. Significant decrease in ion contents (Na, K, and Ca) was observed while Ni ion concentration in the plant tissues increases as the concentration of Ni applied increases. The photosynthetic pigments (chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids) were also decreased by the application of different concentrations of Ni. Total protein and organic nitrogen were found to be reduced at higher concentrations of Nickel. Inoculation of Bacillus licheniformis NCCP-59 improved seed germination and biochemical attribute of the plant under Ni stress. It is clear from the results that the Bacillus Licheniformis NCCP-59 strain has the ability to protect the plants from the toxic effects of nickel and can be used for the phytoremediation of Ni contaminated soil.


Assuntos
Bacillus/fisiologia , Níquel/metabolismo , Oryza/microbiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Clorofila/metabolismo , Germinação , Metais Pesados/análise , Metais Pesados/metabolismo , Níquel/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Paquistão , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sementes/microbiologia , Solo/química , Poluentes do Solo/análise
14.
Cryo Letters ; 35(2): 138-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24869646

RESUMO

BACKGROUND: A solution-based vitrification protocol is a process of sequentially changing-solutions from which both influx of cryoprotectants (loading) and efflux of water (dehydration) were accomplished before cryo-exposure. Hence, we need to properly control the concentration /composition of the cryoprotectant solutions. OBJECTIVE: The study was, using a systematic approach, to develop a protocol for Rubia akane hairy roots, a very sensitive material to cytotoxicity of vitrification solutions. METHODS: Due to the poor response of 10-year in vitro maintained R. akane hairy roots to already established cryopreservation protocols, the following sets of experiments were designed: 1) combinational effect of preculture, osmoprotection and cryoprotection with PVS2-based (A3-70%) and PVS3-based (B5-80%) vitrification solutions; 2) different cooling/warming rates and warming temperature; 3) varying unloading solutions (25%, 35%and 45% sucrose) and durations (7 min and 30 min) with or without changing the unloading solutions. RESULTS: Preculture and osmoprotection treatments were necessary to acquire cytotoxicity tolerance in both vitrification solutions tested and osmoprotection treatment was more critical, especially in B5-80%. A sequential osmoprotection treatment (C10-50%) following conventional osmoprotection (C4-35%) was needed to increase the post-cryopreservation regrowth. Aluminum foil strips were superior to cryovials, but the warming temperature tested (20 degree C and 40 degree C) did not affect post-cryopreservation recovery. In the unloading procedure, a longer duration (30 min) with a higher sucrose solution (S-45%) was harmful, possibly due to osmotic stress. CONCLUSION: R. akane hairy roots are very sensitive to cytotoxicity (both osmotic stress and chemical toxicity) and thus a proper process (preculture, osmoprotection, cryoprotection and unloading) is necessary for higher post-cryopreservation recovery.


Assuntos
Criopreservação/métodos , Raízes de Plantas/fisiologia , Regeneração/fisiologia , Rubia/fisiologia , Vitrificação , Crioprotetores/farmacologia , Meios de Cultura , Concentração Osmolar , Osmorregulação/fisiologia , Raízes de Plantas/efeitos dos fármacos , Rubia/efeitos dos fármacos , Sacarose/farmacologia , Fatores de Tempo , Água/metabolismo
15.
Pak J Biol Sci ; 10(4): 654-8, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19069553

RESUMO

The study was carried out to assess whether water uptake could be improved in sugar beet seeds and salt tolerance at the germination and early seedling stage by soaking the seeds for 10 h in distilled water (control), 100, 150 and 200 mg L(-1) GA3. Electrical Conductivity (EC) values of the NaCl solution were 0.0 (control), 4.7, 9.4 and 14.1 dS n(-1) NaCl. Priming increased the final germination percentage and the germination rate (1/t 50, where t 50 is the time to 50% of germination) under saline condition. Water uptake of primed seeds also increased significantly with increasing concentration of GA3 as compared to control. Priming also alleviated the adverse effect of salt stress on sugar beet in terms of roots and shoots lengths and fresh weights of plants, roots and shoots.


Assuntos
Beta vulgaris/efeitos dos fármacos , Germinação/efeitos dos fármacos , Giberelinas/farmacologia , Sais/farmacologia , Plântula/efeitos dos fármacos , Sementes/efeitos dos fármacos , Água/metabolismo , Beta vulgaris/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Estresse Fisiológico , Fatores de Tempo
16.
Pak J Biol Sci ; 10(6): 910-4, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19069887

RESUMO

Salinity induced inhibition in germination and early stages of cabbage (Brassica oleracea capitata L.) [two varieties (autumn cabbage and spring cabbage)] were measured in response to increasing NaCl concentration. The salinity (NaCl) concentrations in solution were 0 (control), 4.7, 9.4 and 14.1 dS m(-1). Different concentrations of salt stress had considerable effect on germination, germination rate (1/t50, where t50 is the time to 50% of germination), root and shoot lengths, root, shoot and plant fresh weight of cabbage. Final germination in cabbage (autumn cabbage and spring cabbage) showed significant inhibition with increasing salt stress up to 14.1 dS m(-1) NaCl. The required time for germination increased with increasing concentration of salt. The seedling growth was strongly inhibited by all salt levels, particularly at 14.1 dS m(-1). Furthermore Root growth was more affected then shoots growth by salt stress. Fresh weights of root, shoot and plant were also severely affected by different salinity treatments. Linear regression revealed a significant negative relationship between salinity and final germination, germination rate, root and shoot lengths and fresh weights of roots, shoots and plants.


Assuntos
Brassica/crescimento & desenvolvimento , Germinação/fisiologia , Plântula/crescimento & desenvolvimento , Cloreto de Sódio/toxicidade , Água/química , Germinação/efeitos dos fármacos , Modelos Lineares , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Cloreto de Sódio/análise
17.
Pak J Biol Sci ; 10(23): 4303-6, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19086592

RESUMO

The response of germination and early seedling growth of different transgenic rice lines (T-99, T-112, T-115 and T-121) were examined in different levels of salinity (0, 50, 100 and 150 mM NaCl). Final germination, germination rate (1/t50, where t50 is the time to 50% of germination) and early seedling growth were assessed. Final germination percentage was inhibited with increasing salt concentrations. The required time for germination also increased with increasing salinity levels. The seedling growth was also reduced by salt concentrations, particularly at 150 mM. Root and shoot lengths, root/shoot ratio, fresh weights of root and shoot were also decreased with increasing salt stress. T-99 and T-112 had shown greater performance at germination and early seedling growth as compared to other transgenic lines.


Assuntos
Germinação , Oryza/fisiologia , Cloreto de Sódio , Estresse Fisiológico , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia
18.
Hereditas ; 137(1): 52-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12564632

RESUMO

The genetic basis of plant height at various growth stages and the degree of indetermination of plant height in six mungbean genotypes (NM 92, 6601, NM 89, VC 1560D and VC 3902A) were assessed through half diallel cross. Cultivars, 6601 and NM 92, were the best general combiner for pre-flowering dry matter accumulation and minimum increase in plant height from first flower to 90% pods maturity, respectively. For these traits, the combination NM 92 x NM 89 was the best specific combiner of all the crosses. Both additive and dominant gene effects controlled the inheritance of plant height at first pod and to 90% pods maturity, degree of indetermination of plant height (DDh) from first flower to first pod maturity (DDh1), DDh from first flower to 90% pods maturity (DDh2) and DDh from first pod maturity to 90% pods maturity (DDh3). Plant height at first flower was additively inherited. The additive gene action was predominant as compared to dominant gene action for all the traits examined. High narrow and broad sense heritability estimates for DDh2 showed that better response to selection is possible for the development of mungbean genotypes with minimum increase in plant height during post-flowering development.


Assuntos
Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Genes Dominantes , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA